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Abstract

This article describes the implementation of a tool to animate al-
gorithms operating in 3-dimensional space. Good representatives for
such algorithms are those introduced by B. Chazelle and W. Mulzer:
Computing Hereditary Convex Structures.

This tool may be used to animate any algorithm operating in 3-
dimensional space. It should not be necessary to implement any data
structure to reach minimum running time.
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Why can’t we just see what everybody has to imagine?
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1 Basics about Python

1.1 Why Python?

The first argument to answer this question was made on a philosophical
point of view.

In compiled languages like C++ there always exist a binary and the
source code, which are two different things. This is an advantage if we
consider execution speed or if we want to keep intellectual property safe.

For educational purposes I find it is better, if the source code itself is
executable. That means there is no difference between source and binary.
This is the case in interpreted languages, like Python is. Another advantage
is, that it speeds up development time. On the other hand it reduces exe-
cution speed on a constant factor.

Comparing Python to other interpreted languages we may observe the fol-
lowing advantages:

• Well developed object-oriented features.

• The source of Python is open.

• Runs on many platforms like Windows, Linux, Mac OS, BSD, ...

• Huge community [LQ2009:MCA], which means it is easy to get sup-
port.

• Many libraries available

– Linear Algebra: NumPy, SciPy

– Computer Graphics: PyOpenGL, PyGame

– et cetera: accessing database server, serving web pages, creating
reports

• C API available: possible to access libraries coded in C/C++

One of the main differences to other languages is that Python requires cor-
rect indentation of blocks. Many other languages use “{” to start a block
and “}” to end one. Python identifies a block by the level of indentation.
This forces the code to, at least, look structured.

It will be assumed that the reader has basic C++ or Java knowledge. A few
differences to these languages will be explained in the following sub-sections.
Many aspects described there can be found in the official documentation of
Python [PythonDoc2010].
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1.2 How to import Classes from Modules/Files

Each *.py file defines a module for Python. Such a module can contain
many functions and classes. There are two ways to use such a function or
class. The first possibility is to import the whole module. The second one
is to import some functions or classes only.

Here is an example how to import the whole module:

>>> import math
>>> math.sqrt (20)
4.4721359549995796

The following example imports only one function from a module:

>>> from math import sqrt
>>> sqrt (20)
4.4721359549995796

As shown above, there is a difference in how to call the function which de-
pends on how we have imported it. In C-terms we would say the namespaces
are different.

To organize the modules hierarchically, it is possible to put them into pack-
ages. Packages in Python are equal to packages in Java. They are just
folders containing some source files.

The following example imports a class called Node from a module called
node, which is inside the package data.

>>> from data.node import Node
>>> a = Node()

A syntax as shown is not necessary in Java. By definition the name of the
class has to be equal to the filename which contains it. This is not the case
in Python, but many coding conventions recommend to do so.

1.3 Objects have a variable set of attributes

Objects in Python do not have a fixed set of attributes. An attribute gets
appended to the object by setting it the first time. Usually this is done in
the class defined constructor.

Here is an example of how it could look like:

>>> class Complex:
... def __init__(self , real , imag):
... self.real = real
... self.imag = imag
...
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>>> a = Complex (1.0, 2.0)
>>> b = Complex (3.0, 4.0)
>>> a.mutation = 5.0
>>> a.mutation
5.0
>>> b.mutation
AttributeError: Complex instance has no attribute ’mutation ’

On a well developed object-oriented architecture it is not recommended to
use such an approach. Inheritance should be the way to success.

1.4 Built-in Data Structures

To do a time complexity analysis of algorithms, it is necessary to know the
running time (T (n)) of implemented data structures. For our Mesh data
structure we will make heavily use of a list. To achieve needed running
times for this data structure, it is necessary to have a list implementation
with constant time for appending or deleting an element.

1.4.1 Lists

The source code for Pythons built-in list is available at [PythonSrc2010,
listobject.c]. As it is shown in the source code, the default built-in list
is implemented as array-list with memory preallocation for resizing: “The
growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...”

Therefore we implement a linked-list that, for sure, has constant running
time to append or delete an element.

1.4.2 Dictionaries

Dictionaries are implemented as hash maps. Let’s quote [PythonSrc2010,
dictnotes.txt]: “Dictionary operations involving only a single key can be
O(1) unless resizing is possible.”

1.5 Garbage Collection

Python counts the references to each object. If there are no references left,
the object gets destroyed. The destruction happens exactly then when the
last reference is lost. This makes the destruction of garbage deterministic,
but causes problems with circular references. For example: object a refer-
ences object b and object b references object a. These two objects will never
be destroyed, if not at least one reference is set to None.

Beginning with Version 2.0 of Python, they added a Garbage Collector
that is similar to the one used in Java. Object references are still counted
to be deterministic in destruction. In case we have forgotten to break cyclic
references, the garbage collector will do it for us. This makes it impossible
to produce memory leaks, like it may happen in C++.
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1.6 Multithreading and Locking

In multithreaded applications locking mechanisms are necessary to prevent
race conditions (inconsistent states). Python supports a higher level thread-
ing and locking interface [PythonDoc2010, threading].

A nice feature to mention here is the “reentrant lock”. These locks are
easier to handle than normal locks, because a thread can not block itself.
This increases the difficulty to produce unwanted dead locks (application
freezes).

When acquiring a lock, it will be checked if the lock has an owner and
if the current thread owns this lock. In that case, the current thread will
not be blocked. If the lock has an owner which is not the current thread the
current thread will be blocked. When the lock is released, another thread
can gain ownership of this lock by acquiring it.

1.7 Profiling

To ensure that the implemented algorithms meet the stated running time of
complexity analysis, we need a way to measure the number of function calls.
This is done by profiling the running application [PythonDoc2010, profile].

1.8 pydoc

Collaboration with other people is easier with good documentation. With
tools like pydoc such a documentation can automatically be generated by
using Python source code [PythonDoc2010, pydoc]. This tool is similar
to javadoc, but the documentation is always generated on the fly, directly
from the source files.

The usage is quite easy. Simply change to the directory containing the
source files. After this execute pydoc -p 1234. This command will start a
local http server on port 1234. Now start a web-browser of your choice and
open http://localhost:1234/.
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2 OpenGL

The Open Graphics Library (OpenGL) is a specification defining a language
to produce 2D and 3D computer graphics. Every graphics card company
supplies a library, which allows to access the graphics card with standardized
OpenGL calls. This library is usually part of the graphics card driver.

A byte compiled machine code is required to access any piece of hard-
ware. Therefore hardware drivers have an interface to a low-level hardware-
near language. This is the reason, why the C programming language is most
commonly used to access hardware libraries.

2.1 Basic OpenGL Usage

OpenGL is a state machine. Each OpenGL call changes a specified state.
For example: The position to draw is a state. First moving to a position
and then drawing an object is different to first drawing an object and then
moving to a specified position. The position is part of the model view matrix
which is modified by glTranslate function.

Before it is possible to draw anything on screen, the environment has
to be set up. This includes mode of texturing, model of lighting, register
drawing function and so on. After initialization the gl main loop gets called.
This causes the drawing function to be called in an endless loop. It has
to clear the screen and draw everything. It could draw every primitive
(triangles, points, lines) “by hand” or use a standardized toolkit like GLUT.

2.2 GLUT

The Graphics Utility Toolkit (GLUT) simplifies the use of OpenGL. It is
no longer necessary to draw every triangle on our own. GLUT gives the
possibility to easily draw a sphere or a cylinder with one function call. The
triangles of the object to be drawn will be generated and aligned by the
toolkit.

2.3 PyOpenGL

PyOpenGL [PyOpenGL2010] is a simple wrapper to use OpenGL calls in
Python. It uses Pythons C API [PythonDoc2010, c-api] to forward each
function call in Python to the OpenGL library. PyOpenGL also supports
GLUT. Examples of famous tutorials, like NeHes OpenGL Tutorials, were
ported to PyOpenGL and distributed by this project.

However OpenGL and its toolkits are still state machines and do not
use an object-oriented approach. A state of the art software architecture
requires object-oriented interfaces.
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2.4 Object-Oriented Approach

Let’s assume we want to have two OpenGL windows with different content
displayed. As described before, OpenGL is a hardware library to access
one graphics card, GLUT supports one main loop only and OpenGL is a
state machine. One main loop only is not able to call more than one drawing
function. These facts lead to the problem that we simply do not know which
content we have to draw inside our drawing function. Luckily there exists
a function named glutGetWindow which returns the current active window.
By using a hash map, the reference to the corresponding object is found.
This allows to forward the call to the correct drawing function.

To be less state dependent, the implemented class has methods like
draw pipe or draw text. These methods take as parameter where to draw
and an orientation to draw. The model view matrix gets stored before any
other OpenGL function is called. After processing all OpenGL calls, this
matrix will be restored.

This approach makes it possible to separate different contents into differ-
ent objects and reduces the need to know the state before calling a function.

2.5 User Interface

2.5.1 Input

Similar to registering a drawing function, keystroke and mouse event func-
tions are registered. When processing a button, this function gets called. It
has to determine which button was pressed and what action it should per-
form. The keystroke function gets evaluated once a frame is drawn. In case
we want to move around in the 3D environment with keystrokes, moving
speed would directly depend on how many frames per second (fps) are cal-
culated. To be performance independent, we only process the button down
and button up event. This event sets a boolean variable to either true or
false. The “KeyboardInputThread” checks this variable frequently at pre-
defined time steps. The position gets adjusted at each timed cycle of the
thread. This makes the moving speed independent to the performance of
the application.

2.5.2 Output

To produce a 2D picture of an 3D environment, it is essential, where the
camera is positioned. GLU provides a function to set the camera with 3
vectors: position of the camera, where to look at and an up-vector describing
where upside is.
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An example of the output is shown in figure 1.

Figure 1: OpenGL Animation

2.5.3 Class Looker

This class is the glue between the input and the gluLookAt function. It
exists mainly of 3D trigonometry. The looker is able to move around and
look around. The z-axis is always up.
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3 Data Structure

We process a set of n unsorted points with a given useful algorithm (see
section 5). The only possibility to reach minimum computation time is that
every operation on the data structure takes constant time (O(1)).

3.1 Linked List

A linked list consists of a variable number of elements. Each element con-
tains some data and has a pointer to the next element. Table 1 shows a
comparison between linked lists and arrays.

Operation Linked List Array
Indexing O(n) O(1)

Appending O(1) O(n)

Table 1: set operation times

Index operations are not used, because we always store the list element which
holds corresponding data. This assures that only constant time operations
are processed.

3.2 Mesh

Beginning with a comparison between polygon mesh data structures, sum-
marized in Table 3, we observe that a Render Dynamic Mesh fits best for
our needs. One problem remains in the standard Render Dynamic Mesh:
Finding a face or an edge inside the structure does not work in constant
time. To deal with this problem, a hash map is able to return a reference to
the object found. As the reader may know, hash maps have expected con-
stant time for this operation. For that reason the standard Render Dynamic
Mesh got extended with hash maps. The improvement is shown in Table 2.

Operation Render Dynamic extended with hash map
add/remove node/edge/face O(1) ∼ O(1)

find node/edge/face O(n) O(1)
get neighbors of node O(1) O(1)

Table 2: mesh operation times
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Having a mesh data structure which is able to do all operations in constant
time enables to use it for every algorithm in 3-dimensional space. If one
data structure is suitable for nearly all algorithms in 3-dimensional space, it
is reasonable to write a multi-purpose tool that animates many algorithms
of that kind.

An example of a tetrahedron is shown in Table 4 to understand how
the render dynamic mesh data structure works. A node contains a list of
adjacent edges and faces of variable length.

n0 -0.5, -0.5, -0.5 e1 e2 e5 f0 f2 f3
n1 0.5, 0.5, -0.5 e0 e1 e4 f0 f1 f2
n2 -0.5, 0.5, 0.5 e0 e2 e3 f0 f1 f3
n3 0.5, -0.5, 0.5 e3 e4 e5 f1 f2 f3

(a) Node List

e0 n2 n1 f0 f1
e1 n1 n0 f0 f2
e2 n0 n2 f0 f3
e3 n2 n3 f1 f3
e4 n3 n1 f1 f2
e5 n3 n0 f2 f3

(b) Edge List

f0 n0 n2 n1 e0 e1 e2
f1 n1 n2 n3 e3 e4 e0
f2 n0 n1 n3 e4 e5 e1
f3 n2 n0 n3 e5 e3 e2

(c) Face List

Table 4: Tetrahedron as Render Dynamic Mesh

As we may observe, it is possible to deform this data structure to an
inconsistent state. Of course it would not be an intention to do so, but it
may happen while implementing an algorithm. To find such mistakes, the
implementation of the data structure is able to check its consistency with
an is consistent method.

Another feature is the possibility to save and load the structure from a
human-readable ASCII text file. An example is shown in subsection 3.2.5.

3.2.1 Nodes

A Node is also known as vertex or point. It consists of a position, a list
of adjacent edges and a list of adjacent faces. These lists have a variable
length. The hash value of a node is defined by its position only.

3.2.2 Edges

An edge consists of a start node and an end node, a face to the left and
a face to the right. The hash value of an edge is defined by the given two
nodes. Although a start and an end defines a direction for an edge, the hash
value is direction independent.

13



3.2.3 Faces

A face is also known as facet or, under circumstances, triangle. It consists
of three nodes: A, B, C and three edges: a, b, c. Faces have an orientation,
which tells what is in front of or what is below the face. The hash value
is defined by these three nodes. It is orientation independent. Nevertheless
checking for equality of two faces also checks the orientation.

3.2.4 Contained Data

Each node, edge and face contains a data field. These fields are used to store
algorithm specific information. For example: The QuickHull algorithm (see
section 5.2) uses the data field of faces to store the set of conflicting points
for each face.

3.2.5 File Format

The file format of this mesh data structure is quite easy to understand,
if we look at the example shown in listing 1. This file describes how the
tetrahedron of table 4 is stored. It starts with a description of the provided
mesh. This description can be read from the description field of a mesh
object. The keyword nodes indicates that following lines are nodes. It is
equal with edges and faces.

This is a tetrahedron.

nodes:
[0]= Node ([-0.500, -0.500, -0.500])
[1]= Node ([0.500 , 0.500, -0.500])
[2]= Node ([-0.500, 0.500, 0.500])
[3]= Node ([0.500 , -0.500, 0.500])

edges:
[0]= Edge(nodes[2], nodes [1])
[1]= Edge(nodes[1], nodes [0])
[2]= Edge(nodes[0], nodes [2])
[3]= Edge(nodes[2], nodes [3])
[4]= Edge(nodes[3], nodes [1])
[5]= Edge(nodes[3], nodes [0])

faces:
[0]= Face(nodes[0], nodes[2], nodes [1])
[1]= Face(nodes[1], nodes[2], nodes [3])
[2]= Face(nodes[0], nodes[1], nodes [3])
[3]= Face(nodes[2], nodes[0], nodes [3])

Listing 1: tetrahedron.mesh

14



4 Thread Architecture

Our thread architecture decouples the computation defined by the algo-
rithm from the visualization. Each thread can be separately analyzed by
the profiler. It allows to count each function called by the algorithm thread.
This means it can be experimentally determined, if an implementation of
an algorithm meets stated running time.

Figure 2 shows the implemented thread architecture. Objects to share
data between these threads are shown in rectangles. It has to be ensured
that each of these objects works with correct data locking mechanisms.

OpenGLThreadMainThread KeyboardAdapterThread

Mesh

Animator

Looker

Figure 2: Thread Architecture

The main thread handles the algorithm itself. The OpenGL thread is re-
sponsible for the visualization. The keyboard adapter thread processes the
user input. This is done in an own thread to have performance independent
moving speed when moving around in the 3D environment with keystrokes
(see section 2.5.1).

4.1 Class Animator

The Animator class is the glue between the algorithm and the visualization.
It contains the following functions:

• set points to wait in algorithms source code
An algorithm stops its execution if this function is called until contin-
ued. Usually the computation is continued after a predefined timeout.

• toggle pause

• next step

• skip animation

• set displayed text

• set displayed mesh

15



5 Implemented Algorithms

5.1 Basics in Computational Geometry

The Relationship between the number of edges, faces and vertices is ex-
plained in Theorem 5.1.

Theorem 5.1. Let conv(P ) be a convex polytope with n vertices. The num-
ber of edges ne of conv(P ) is at most 3n− 6. The number of facets nf is at
most 2n− 4.

Proof. Euler’s formula states the following relation:

n− ne + nf = 2

We may observe that every facet has at least 3 edges and every edge has
2 adjacent facets. This gives 2ne ≥ 3nf . Plugging this observation into
Euler’s formula we get:

ne ≤ 3n− 6 nf ≤ 2n− 4

These relations are valid for n ≥ 3 only.

The degree of a point p is denoted as deg p. This counts the number of
edges where p is a start- or an endpoint. Let P be a set of points in general
convex position. As we have seen, conv(P ) denotes the convex hull of this
set. degP p denotes the degree of a point p in conv(P ).

Lemma 5.1. Let conv(Pr) be a convex polytope with r vertices. The expected
degree of pr ∈ Pr is bounded by 6 for all r ≥ 4.

Proof. Every edge gets counted in the summation of the degrees of each
point pi ∈ Pr two times:

∑r
i=1 degPr

pi ≤ 2(3r − 6) (for r ≥ 3).
The first idea to calculate the expected value of the degree of points

would be simply to take the summation over all degrees and divide them by
the number of points. That would be 2(3n−6)

n . This is not valid because the
relation stated by Theorem 5.1 holds for n ≥ 3 only.

To deal with this problem, we start to calculate the expected value using
a tetrahedron. That means, we have 4 points set and calculate the mean
over the remaining r ≥ 5 points. The 4 points of a tetrahedron have a total
degree of 12. The expected degree E[degPr

pr] is bounded as follows:

E[degPr
pr] =

1
r − 4

r∑
i=5

degPr
pi

≤ 1
r − 4

((
r∑

i=1

degPr
pi

)
− 12

)

≤ 2(3r − 6)− 12
r − 4

= 6
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5.2 QuickHull

5.2.1 Problem

Let P be a set of n points in R3.
We want to compute the convex hull of P (CH(P )).

5.2.2 Algorithm

The following algorithm is based on ConvexHull [deBerg2008, Chapter 11.2].
An improvement to mention is that this algorithm does not need the com-
plete set of conflicting points for each facet. A point stays in conflict to a
facet if the facet has to be deleted to add the point to the convex hull. The
set of conflicting points of facet f is denoted as Pconflict(f). An example of
an conflict graph is shown in figure 3.

QuickHull(P )

1. Initialize a tetrahedron with 4 extremal points of P .

2. Initialize Pconflict(f) for each facet f .

3. Let queue be a queue with all facets that have conflicting points.

4. While queue not empty:

(a) Let f be the first facet in queue.

(b) Get point p ∈ Pconflict(f) with maximal distance to f .

(c) Remove all from p visible facets (also from queue) starting
from f and collect all conflicting points.

(d) Triangulate open edges with point p.

(e) Update conflict set of generated facets with collected conflict-
ing points.

(f) Append generated facets, which have conflicting points, to
the end of queue.

5.2.3 Correctness

Lemma 5.2. QuickHull computes the complete convex hull of P .

Proof. The computation starts with a convex polytope, a tetrahedron. In
step 4c all facets visible from a point get removed. After triangulation in
step 4d the polytope stays convex. There is no possibility that this polytope
will ever be else than convex.
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Figure 3: conflict graph

Next part of the proof is to show that the resulting convex hull is com-
plete. This means we have to show that all points outside the polytope get
processed until the queue of facets is empty. During initialization in step 2,
all points outside the polytope will be in any set of conflicting points at
least once. After triangulation in step 4d, the collected conflicting points
are either inside or outside the newly generated polytope. If such a point is
inside, it does no longer stay in conflict to any facet and will be ignored. In
case it is outside, the conflicts will be analyzed in step 4e, which generates
conflict sets for the newly generated facets. If all facets with conflicting
points are processed, the queue is empty and we are done.

5.2.4 Expected Time

To answer the question for the expected running time of QuickHull we start
our investigation by analyzing the number of facets that our algorithm has
to process. (see [deBerg2008, Lemma 11.3] for details)

Lemma 5.3. The expected number of facets created during computation by
QuickHull is at most 6n− 20 (O(n)).

Proof. The computation starts with a tetrahedron. At each iteration r one
point pr will be inserted into the intermediate convex hull CH(Pr). This will
increase the size of the convex hull. By Lemma 5.1 the expected degree of
an inserted point does not depend on the size of the convex hull. For that
reason, every inserted point pr has an expected degree bound by 6 and will
therefore cause to create expected 6 facets.

The expected number number of facets created by QuickHull is 4 (tetra-
hedron) plus the summation of expected degrees.

4 +
n∑

r=5

E[degCH(Pr) pr] ≤ 4 + 6(n− 4) = 6n− 20

18



Lemma 5.4. QuickHull runs in O(n log(n)) expected time.

Proof. Certainly the initialization takes linear time (O(n)). As proofed be-
fore, we have to process O(n) facets. The expected running time depends
on the cardinality of the set of conflicting points for each facet.

By [deBerg2008, Lemma 11.6] the expected value of
∑

e #(P (e)), where
the summation is over all horizon edges that appear at some stage of the
algorithm, is ≤ 96n lnn. In this notation #(...) denotes the cardinality of a
set. P (e) = Pconflict(f1) ∪ Pconflict(f2) is the union of the set of conflicting
points to the edge e adjacent faces f1 and f2. The existence of a constant
value of E[degCH(Pr) pr] allows that

∑
e #(P (e)) = O(n log n) implies the

average size for one set of conflicting points. E[Pconflict(f)] = O(log n).
These facts combined give an overall expected running time of O(n log n).

5.3 SplitHull

5.3.1 Problem

We have an n-point set P in R3 in general convex position. The points
B ⊆ P are called blue. The points R = P\B are called red. conv(P )
denotes the convex hull of P .

Given conv(P ) we want to compute conv(B) in O(n) time.

5.3.2 Algorithm

The following algorithm was introduced by [Chazelle2009]. It works in-place.
SplitHull removes all red points from the convex hull of P . As result, the
remaining blue edges and blue points form a convex hull. An edge is called
blue iff both connected points are blue.

SplitHull(conv(P ))

1. If P contains no red points, return conv(P ).

2. If there exists a red point r in P for which we have degP r ≤ d0

(with a suitable constant d0), then return SplitHull(conv(P\r)).

3. Take random blue points b ∈ B until (i) degP b ≤ 6; and (ii) there
exists a blue edge e in conv(P\b) visible from b.

4. Call SplitHull(conv(P\b)) to compute conv(B\b).

5. Using e as a starting edge, insert b into conv(B\b) and return
conv(B).
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5.3.3 Correctness

Lemma 5.5. SplitHull(conv(B)) computes conv(B).

Proof. Only red points are removed permanently from conv(P ). All blue
points that are removed from conv(P ) in step 4 are inserted in step 5. The
number of blue points stays the same.

The removal of any point of conv(P ) reduces the average degrees of
surrounding points. This assures that all red points will be processed in
some stage. As shown in Lemma 5.1, we can always find a point that has
degree at most 6. Therefore d0 should at least be 6.

5.3.4 Expected Time

Lemma 5.6. The expected time for SplitHull(conv(P )) is O(n).

Proof. The most important part is that every point will only be handled
once.

For step 1 we simply use a counter for the number of red points. This
will take O(1) time to check for red points and O(n) time to initialize once.
We also initialize a list L with red points which have degP r ≤ d0.

Because the point to remove has a bounded degree (≤ d0), the time for
removal in step 2 is constant. When the hull is altered, we update the degrees
of directly connected points and the list L. After step 2 our convex hull
contains at least n/5 pleasant blue points (if d0 is large enough). Therefore
we expect 5 iterations to find a pleasant blue point b and a corresponding
blue edge e in step 3. The point b can be removed from the convex hull in
constant time because we have a bounded degree (degP b ≤ 6). To insert b
in step 5 we need to know a visible edge e. The edge e helps us to determine
which facets are visible from b and need to be removed. This takes constant
time.

5.3.5 Implementation Details

This algorithm requires the find edge method of the mesh to have a con-
stant running time. This is needed in step 5. During computation it may
happen that edge e gets deleted. After this edge is recreated, it has another
reference. This requires a hash map to be able to find edge e in constant
time.
Special cases that need to be noticed when implementing SplitHull are:

1. A blue edge e is visible only, after the blue point b is removed from
convex hull.

2. All faces may disappear.

3. With a given small d0(< 6) it may be impossible to find a suitable
blue point b.
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5.4 RandMultiSplit

5.4.1 Problem

Let P be a set of n points in R3 in general convex position. Each point p ∈ P
is colored random (uniformly and independently) with a color in {1, ..., χ}.
c : P → {1, ..., χ} defines a coloring of P . For i ∈ {1, ..., χ}, Ci = c−1(i) is
the point set colored i. F [P ] denotes the set of facets of conv(P ).

Given conv(P ) we want to compute conv(Ci)∀i in O(n) time.

5.4.2 Algorithm

The second algorithm introduced by [Chazelle2009] solves the problem de-
scribed before.

RandMultiSplit(conv(P ))

1. Pick a random sample S ⊆ P of size n/χ and compute conv(S)

2. For each p ∈ P , determine a facet fP ∈ F [S] in conflict with p.

3. For each color i:

(a) Insert all points of Ci into conv(S).

(b) Extract conv(Ci) from conv(Ci ∪ S).

5.4.3 Correctness

Lemma 5.7. RandMultiSplit(conv(P )) computes conv(Ci).

Proof. Obviously all points of Ci get inserted at step 3a. The next step will
extract conv(Ci) by using SplitHull. In Lemma 5.5 we have shown that
SplitHull works correctly.

5.4.4 Expected Time

Lemma 5.8. The expected time for RandMultiSplit is O(n).

Proof. In step 1 we have to initialize a random convex sample conv(S) with
n/χ points. By using SplitHull this can be done in n/χ time. conv(S)
needs to be copied χ times to capture every coloring. Therefore the first
step requires O(n) time.

The second step requires another algorithm (SubsetConflictWalk). Let’s
state here that this is possible in O(n) time. A proof will be given in the
next section.
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Because we have conflicting facets fp, each point can be inserted in
expected constant time. By using SplitHull in step 3b, conv(Ci) can be
computed in O(|Ci| + n/χ) time. There are χ colors, so step 3 takes O(n)
time.

5.5 SubsetConflictWalk

5.5.1 Problem

Let P be a set of n points in general convex position in R3. Let Q be a
subset of P (Q ⊂ P ).

Given conv(Q) and conv(P ) we search for a conflict facet fq ∈ F [Q] for
each point q ∈ {P\Q}. F [Q] denotes the set of facets of conv(Q). This
computation is required to run in O(n) time.

5.5.2 Algorithm

The algorithm is used to solve step 2 of RandMultiSplit. It is the third
algorithm introduced by [Chazelle2009].

ΓP (p) denotes the neighbors of p in conv(P ). An example of the neigh-
borhood is shown in figure 4. Big points show that they are in Q and
therefore in P . In the algorithm these points are usually denoted as p.
Small points show that they are in P only. These points are denoted as q.

Figure 4: Neighborhood [Chazelle2009]
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SubsetConflictWalk(conv(Q), conv(P ))

1. Let queue be a queue with the elements in Q.

2. While queue 6= 0.

(a) Let p be the next point in queue.

(b) If p /∈ Q, insert p into conv(Q), using a previously computed
conflict facet fp for p as a starting point.

(c) For each neighbor q ∈ ΓP (p), find a conflict facet f̃q in
conv(Q ∪ p).

(d) Using the f̃q’s, find conflict facets fq ∈ F [Q] for ΓP (p). if
q ∈ ΓP (p) has not been encountered yet, insert into queue.

f̃q denotes a conflicting facet of q in conv(Q∪ p). A conflicting facet f̃q can
always be found in the adjacent facets of p. fq denotes the conflicting facet
of q in conv(Q). The difference of f̃q and fq is shown in figure 5.

pq
fq~

fq

Figure 5: Difference between fq and f̃q

5.5.3 Correctness

Lemma 5.9. SubsetConflictWalk computes a conflicting facet fq ∈ F [Q]
∀q ∈ {P\Q}

Proof. The queue gets initialized with all points of Q.
Step 2 does a breath first search over all points. It retrieves surrounding

conflict facets fq of each neighbor q ∈ ΓP (p) of p. All neighbors q that have
not been encountered yet, are inserted into the queue.
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5.5.4 Expected Time

Lemma 5.10. In O(degQ p + degP p) time we can compute a conflicting
facet fq ∈ F [Q] for every neighbor q ∈ ΓP (p) of p.

Proof. The conflicting facets in Step 2c for ΓP (p) can be computed by merg-
ing the cyclically ordered lists ΓP (p) and ΓQ(p). This takes O(degQ p +
degP p) time. Because we have the degree for each point p bounded to 6
(Lemma 5.1), we can bound the total running time as follows:

T (n) = E

∑
p∈P

(degQ p + degP p)

 ≤ O(n)
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6 How to extend

Our tool can easily be extended to animate any algorithm operating in
3-dimensional space. The only thing that needs to be done is filling our
mesh data structure (see section 3.2). By using the wait method of the
supplied animator object (see section 4.1) it is possible to define a step of
the algorithms computation.

The data fields of Node, Edge and Face can be set freely. In case it is
required to invoke any other algorithm, we have to assure that the required
data fields are available. For example: To invoke QuickHull every Face
needs an object of type QHFaceData as data. This class can be subclassed
to append any additional data.

A good method for testing new implementations is to create randomized
input data. Our tool stores the input mesh before invoking an algorithm.
In case the computation causes an error, the input mesh will be available
to reproduce the error. If no error occurs, the data will be deleted after the
computation is completed.
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